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Fig. 1. We present DiffPoseTalk, a novel diffusion-based speech-driven animation system incorporated with a speaking style encoder to extract style features
from arbitrary reference videos. Given an input speech and a speaking style, our system generates diverse and stylistic facial animations along with head
movements.

The generation of stylistic 3D facial animations driven by speech presents
a significant challenge as it requires learning a many-to-many mapping
between speech, style, and the corresponding natural facial motion. However,
existing methods either employ a deterministic model for speech-to-motion
mapping or encode the style using a one-hot encoding scheme. Notably, the
one-hot encoding approach fails to capture the complexity of the style and
thus limits generalization ability. In this paper, we propose DiffPoseTalk,
a generative framework based on the diffusion model combined with a
style encoder that extracts style embeddings from short reference videos.
During inference, we employ classifier-free guidance to guide the generation
process based on the speech and style. In particular, our style includes the
generation of head poses, thereby enhancing user perception. Additionally,
we address the shortage of scanned 3D talking face data by training our
model on reconstructed 3DMM parameters from a high-quality, in-the-wild
audio-visual dataset. Extensive experiments and user study demonstrate that
our approach outperforms state-of-the-art methods. The code and dataset
are at https://diffposetalk.github.io.
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1 INTRODUCTION
The domain of speech-driven 3D facial animation has experienced
significant growth in both academia and industry, primarily owing
to its diverse applications in education, entertainment, and virtual re-
ality. Speech-driven 3D facial animation generates lip-synchronized
facial expressions from an arbitrary speech signal. It is a highly chal-
lenging research problem due to the cross-modal many-to-many
mapping between the speech and the 3D facial animation. However,
most existing speech-driven 3D facial animation methods rely on de-
terministic models [Cudeiro et al. 2019; Fan et al. 2022; Richard et al.
2021; Xing et al. 2023], which often fail to sufficiently capture the
complexmany-to-many relationships and suffer from the regression-
to-mean problem, thereby resulting in over-smoothed face motions.
Furthermore, these methods generally employ a one-hot encod-
ing scheme for representing speaking styles during training, thus
limiting their adaptability to new speaking styles.

In contrast to deterministic models, diffusion models can fit vari-
ous forms of distributions, making them better suited to addressing
the many-to-many mapping challenge. Recent diffusion models
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have shown impressive results in various domains [Yang et al. 2023].
Specifically, the existing diffusion-based audio-driven human mo-
tion generation methods have shown appealing results. However,
they are not trivially transferable to speech-driven facial animation
for three main reasons. First, unlike gestures, which can have a more
relaxed temporal correlation with audio (occurring slightly before
or after the associated speech), facial movements — particularly lip
motions — require much stricter timing. This calls for specifically
designed structures to precisely align speech and motion informa-
tion. Second, lip motions contain richer semantics than gestures
or dancing, which necessitate a more robust speech encoder to ex-
tract phoneme-level features. Lastly, humans have diverse speaking
styles. A strong style encoder should be designed to extract style
representation from an arbitrary style clip.
To address the aforementioned limitations and challenges, we

introduce DiffPoseTalk, a novel controllable diffusion-based genera-
tive model, to generate high-quality, diverse, speech-matched, and
stylistic facial motions for speech-driven 3D facial animation (Fig-
ure 1). Our method overcomes the inability of existing diffusion
models that cannot be directly transferred to speech-driven expres-
sion animation. Compared to existing methods, the main improve-
ment of DiffPoseTalk can be characterized as follows. We use an
attention-based architecture to align facial motions with speech,
and train a diffusion model to predict the facial expression signal
itself [Ramesh et al. 2022a; Tevet et al. 2023] instead of predicting
the noise; this architecture allows us to facilitate the subsequent ad-
dition of geometric constraints to generate more reasonable results.
Along with the expression, we also predict the speaker’s head pose
and design the corresponding loss function to obtain more natural
animations. Furthermore, we exploit HuBERT [Hsu et al. 2021] to
encode the input speech to improve generalization and robustness.
Finally, we develop a style encoder to obtain latent style code from
a style video clip, and perform classifier-free guidance [Ho and
Salimans 2022] at inference time to achieve example-based style
control. To address the scarcity of co-speech 3D facial animation
data by motion capture, we collect and build a speech-driven facial
animation dataset with varied speaking styles and head poses.
In summary, our contribution is threefold:

• We propose a novel diffusion-based approach to jointly gen-
erate diverse and stylistic 3D facial motions with head poses
from speech.

• We develop a style encoder to extract personalized speaking
styles from reference videos, which can be used to guide the
motion generation in a classifier-free manner.

• We build a new audio-visual dataset that encompasses a
diverse range of identities, speaking styles, and head poses.
This dataset and our code are available for research purposes.

2 RELATED WORK

2.1 Speech-Driven 3D Facial Animation
Existing speech-driven 3D facial animation methods can be roughly
divided into procedural and learning-based methods. Procedural
approaches generally segment speech into phonemes, which are
then mapped to predefined visemes via a set of comprehensive
rules. For example, Cohen et al. [2001] use dominance functions to

map phonemes to corresponding facial animation parameters, while
Edwards et al. [2016] factor speech-related animations into jaw and
lip actions, employing a co-articulation model to animate facial rigs.
Although these procedural methods offer explicit control over the
resulting animations, they often require intricate parameter tuning
and lack the ability to capture the diversity of real-world speaking
styles.

Meanwhile, learning-based methods have grown rapidly over the
recent decade. These approaches typically adopt acoustic features
like MFCC or pretrained speech model features [Baevski et al. 2020;
Hannun et al. 2014; Hsu et al. 2021] as the speech representation,
which is then mapped to 3D morphable model parameters [Peng
et al. 2023; Zhang et al. 2023b] or 3D mesh [Cudeiro et al. 2019; Fan
et al. 2022; Haque and Yumak 2023; Richard et al. 2021; Xing et al.
2023] through neural networks. However, most current methods
are regression models, which are deterministic and tend to generate
over-smoothed lip motion. This issue is especially pronounced in
large-scale datasets, where these methods are prone to yielding av-
erage outcomes, thereby struggling to produce precise and diverse
responses to voice data. Typically, these deterministic approaches
have been trained on smaller datasets like VOCA [Cudeiro et al.
2019] and BIWI [Fanelli et al. 2013], which unintentionally sidestep
the regression-to-mean challenge. However, when these methods
are applied to the more extensive dataset used in our study, a signif-
icant decline in performance is observed. In contrast, our method
proposed in this paper leverages the strong probabilistic modeling
capability of diffusion models to generate diverse and stylistic 3D
facial animations.

Current learning-based methods typically achieve style control in
a label-based or example-based manner. The former class relies on
manually predefined style labels. For example, Cudeiro et al. [2019]
and Fan et al. [2022] employ one-hot embeddings as the style label
for different identities in the training set. However, this limits the
model’s ability to adapt to new individuals and capture complex
fine-grained styles. The latter class (e.g., Imitator [Thambiraja et al.
2023]) is able to generate talking animation in arbitrary styles, even
those unseen during training, by imitating examples. Our method
falls into this category. Different from Imitator, our method adopts
contrastive learning to extract salient style features and does not
require optimization or fine-tuning.

2.2 Diffusion Probabilistic Models
Diffusion probabilistic models [Ho et al. 2020; Sohl-Dickstein et al.
2015], which are able to generate high-quality and diverse samples,
have achieved remarkable results in various generative tasks [Yang
et al. 2023]. They leverage a stochastic diffusion process to grad-
ually add noise to data samples, subsequently employing neural
architectures to reverse the process and denoise the samples. A key
strength of diffusion models lies in their ability to model various
forms of distributions and capture complex many-to-many relation-
ships, making them particularly well-suited for our speech-driven
facial animation task.
For conditional generation, classifier-guidance [Dhariwal and

Nichol 2021] and classifier-free guidance [Ho and Salimans 2022]
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Fig. 2. (Left) Transformer-based denoising network. We employ a windowing strategy to generate speech-driven 3D facial animations for inputs of
arbitrary length. HuBERT-encoded speech features𝑨−𝑇𝑝 :𝑇𝑤 , prior clean motion parameters𝑿 0

−𝑇𝑝 :0, current noisy motion parameters𝑿𝑛
0:𝑇𝑤 , shape parameters

𝜷 , style feature 𝒔, and the diffusion timestep 𝑛 are fed into the transformer decoder. The decoder then predicts clean motion parameters �̂� 0
−𝑇𝑝 :𝑇𝑤 , which are

renoised to 𝑿𝑛−1
0:𝑇𝑤 for the next denoising iteration. (Right) The speaking style encoder. The style feature 𝒔 can be extracted from a sequence of motion

parameters 𝑿0:𝑇 using a transformer encoder.

are widely employed in tasks such as text-to-image synthesis [Rom-
bach et al. 2022], text-to-motion [Tevet et al. 2023] synthesis, and
audio-driven body motion generation [Alexanderson et al. 2023;
Zhu et al. 2023]. In particular, diffusion model with classifier-free
guidance has achieved impressive results in multi-modal modeling.
Recently, diffusion models have also been applied in speech-driven
3D facial animation. FaceDiffuser [Stan et al. 2023] leverages the
non-deterministic capabilities of diffusion models to capture the
complex many-to-many relationship between audio and face mo-
tions. Nevertheless, it lacks the ability to control the head poses of
the generated talking faces and does not support novel style condi-
tions. In this paper, we propose a novel diffusion-based model that
jointly generates facial motions and head poses while accommodat-
ing arbitrary novel style conditions.

3 METHOD
An overview of our proposed method is illustrated in Figure 2. We
adopt a well-established, pretrained encoder to extract speech fea-
tures, while using 3DMM as the face representation (Section 3.1). A
transformer-based denoising network is used for the reverse diffu-
sion process (Section 3.2), wherewe guide the conditional generation
in a classifier-free manner (Section 3.3).

3.1 Problem Formulation
Our method takes a speech feature1 𝑨0:𝑇 , the 3DMM shape param-
eter 𝜷 of a template face, and a speaking style vector 𝒔 as input,
and generates a 3DMM-based 3D facial animation represented by a
sequence of 3DMM expression and pose parameters 𝑿0:𝑇 . The style
vector 𝒔 can be extracted from a short reference video using our
speaking style encoder (Section 3.3.1).

1We use Python style indexing and slicing in this paper, i. e., “0 : 𝑇 ” includes
“0, 1, . . . ,𝑇 − 1”.

Speech Representation. Extensive facial animation studies have
shown that self-supervised pretrained speech model features like
Wav2Vec2 [Baevski et al. 2020] and HuBERT [Hsu et al. 2021] out-
perform traditional ones such as MFCC. Based on these findings,
we utilize HuBERT as our chosen speech encoder for facial anima-
tion generation, as it has been proven to be superior to Wav2Vec2
in this regard [Haque and Yumak 2023]. HuBERT consists of a
temporal convolutional audio feature extractor and a multi-layer
transformer encoder. To align the audio features with the facial
motions’ sampling rate, we introduce a resampling layer after the
temporal convolutions. Thus, for a given raw audio clip that matches
a facial motion sequence of length 𝑇 , HuBERT generates a speech
representation 𝑨0:𝑇 that also spans 𝑇 time steps.
3DFaceRepresentation.Weuse a 3Dmorphablemodel FLAME [Li
et al. 2017] with 𝑁 = 5, 023 vertices and 𝐾 = 4 joints, whose
geometry can be represented using parameters {𝜷, 𝝍, 𝜽 }, where
𝜷 ∈ R100 is the shape parameter, 𝝍 ∈ R50 is the expression pa-
rameter, and 𝜽 ∈ R3𝐾+3 is the head pose parameter. Given a set
of FLAME parameters, the 3D face mesh can be obtained with
𝑀 (𝜷, 𝜽 , 𝝍) = 𝑊 (𝑇𝑃 (𝜷, 𝜽 , 𝝍), J(𝜷), 𝜽 ,W) , where 𝑇𝑃 outputs ver-
tices by combining blend shapes, the standard skinning function
𝑊 (T, J, 𝜽 ,W) rotates the vertices of T around joints J, and W per-
forms linear smoothing. Specifically, we use the shape parameter
𝜷 to serve as the neutral template face for the speaker. For facial
animation, we predict the expression parameters 𝝍 as well as the
jaw and global rotation components within the pose parameters 𝜽 .
To simplify notation, we compose 𝝍 and 𝜽 as the motion parameter
𝒙 and rewrite the mesh construction function as𝑀 (𝜷, 𝒙). The rea-
sons for choosing 3DMM parameters over mesh vertices as the face
representation are discussed in Section 5.

To reconstruct accurate 3DMM parameters from the audio-visual
dataset, we make comprehensive use of several state-of-the-art 3D
face reconstruction and pose estimation works, similar to Daněček
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et al. [2023]. We adopt MICA [Zielonka et al. 2022] for identity
shape prediction, SPECTRE [Filntisis et al. 2022] for accurate expres-
sion reconstruction of lip movements and jaw pose prediction, and
6DRepNet [Hempel et al. 2022] for head pose prediction. Then, we
follow EmoTalk [Peng et al. 2023] to apply a Savitzky-Golay filter
to the predicted expressions and poses, which markedly improves
motion smoothness.

3.2 Facial Animation Diffusion Model
We propose to use a diffusion model to generate speech-driven fa-
cial animation. The diffusion model involves two processes. The
forward process is a Markov chain 𝑞

(
𝑿𝑛 |𝑿𝑛−1

)
for 𝑛 ∈ {1, . . . , 𝑁 }

that progressively adds Gaussian noise to an initial data sample 𝑿0

according to a variance schedule. The original sample is gradually
substituted by noises, eventually reaching a standard normal distri-
bution 𝑞

(
𝑿𝑁 |𝑿0

)
. The reverse process, on the contrary, leverages

the distribution𝑞
(
𝑿𝑛−1 |𝑿𝑛

)
to recreate the sample from noise. This

distribution depends on the entire dataset and hence is intractable.
Therefore, a denoising network is used to approximate this distri-
bution. In practice, the denoising network is trained to predict the
noise [Ho et al. 2020] or the clean sample 𝑿0 [Ramesh et al. 2022b].
We opt for the latter, as it enables us to incorporate geometric losses
that offer more precise constraints on facial motions. The effective-
ness of this scheme has been validated by prior works on human
body motion generation [Tevet et al. 2023] and our experiments.
Transformer-Based Denoising Network. Our transformer-based
denoising network, as illustrated in Figure 2, consists of two compo-
nents: a pretrained HuBERT encoder for extracting speech features
𝑨, and a transformer decoder for sampling predicted motions �̂�0

from noisy observations 𝑿𝑛 (𝑛 = 𝑁, 𝑁 − 1, . . . , 1) in an iterative
manner. A notable design is an alignment mask between the encoder
and the decoder [Fan et al. 2022], which ensures proper alignment
of the speech and motion modalities. Specifically, the motion feature
at position 𝑡 only attends to the speech feature 𝒂𝑡 . The initial token,
which is composed of diffusion timestep 𝑛 and other conditions,
attends to all speech features. We allow the transformer part of the
HuBERT speech encoder to be trainable, which enables HuBERT to
better capture motion information directly from speech. To accom-
modate sequences of arbitrary lengths, we implement a windowing
strategy for the inputs.
Formally, the inputs to the denoising network are processed as

follows. For a given speech feature sequence of length 𝑇 , we parti-
tion it into windows of length 𝑇𝑤 (padding is added to the audio if
it is not long enough). To ensure seamless transitions between con-
secutive windows, we include the last 𝑇𝑝 frames of speech features
𝑨−𝑇𝑝 :0 and motion parameters 𝑿0

−𝑇𝑝 :0 from the preceding window
as conditional inputs. Note that for the first window, the speech
features and motion parameters are replaced with learnable start
features 𝑨start and 𝑿start. Within each window at diffusion step 𝑛,
the network receives both previous and current speech features
𝑨−𝑇𝑝 :𝑇𝑤 , the previous motion parameters 𝑿0

−𝑇𝑝 :0, and the current

noisy motion parameters 𝑿𝑛0:𝑇𝑤 sampled from 𝑞

(
𝑿𝑛0:𝑇𝑤 |𝑿

0
0:𝑇𝑤

)
. The

denoising network then outputs the clean sample as:

�̂�0
−𝑇𝑝 :𝑇𝑤 = 𝐷

(
𝑿𝑛0:𝑇𝑤 ,𝑿

0
−𝑇𝑝 :0,𝑨−𝑇𝑝 :𝑇𝑤 , 𝑛

)
. (1)

Losses. We use the simple loss [Ho et al. 2020] for the predicted
sample:

Lsimple =
�̂�0

−𝑇𝑝 :𝑇𝑤 − 𝑿0
−𝑇𝑝 :𝑇𝑤

2 . (2)

To better constrain the generated face motion, we convert the
FLAME parameters into zero-head-posed 3D mesh sequences. For-
mally,𝑴−𝑇𝑝 :𝑇𝑤 = 𝑀0

(
𝜷,𝑿0

−𝑇𝑝 :𝑇𝑤

)
and �̂�−𝑇𝑝 :𝑇𝑤 = 𝑀0

(
𝜷, �̂�0

−𝑇𝑝 :𝑇𝑤

)
.

We then apply the following geometric losses in 3D space: the vertex
loss Lvert [Cudeiro et al. 2019] for the positions of the mesh vertices,
the velocity loss Lvel [Cudeiro et al. 2019] for better temporal con-
sistency, and a smooth loss Lsmooth to penalize large acceleration
of the predicted vertices:

Lvert =
𝑴−𝑇𝑝 :𝑇𝑤 − �̂�−𝑇𝑝 :𝑇𝑤

2 , (3)

Lvel =
(𝑴−𝑇𝑝+1:𝑇𝑤 −𝑴−𝑇𝑝 :𝑇𝑤−1

)
−
(
�̂�−𝑇𝑝+1:𝑇𝑤 − �̂�−𝑇𝑝 :𝑇𝑤−1

)2 ,
(4)

Lsmooth =

�̂�−𝑇𝑝+2:𝑇𝑤 − 2�̂�−𝑇𝑝+1:𝑇𝑤−1 + �̂�−𝑇𝑝 :𝑇𝑤−2
2 . (5)

We apply geometric losses Lhead to head motions in a similar way.
Please refer to the Appendix for more details.

In summary, our overall loss is defined as:

L = Lsimple + 𝜆vertLvert + 𝜆velLvel + 𝜆smoothLsmooth + Lhead . (6)

3.3 Style-Controllable Diffusion Model
The facial animation diffusion model generates facial motions con-
ditioned on input speech. In addition to the speech, we use speaking
style and template face shape as control conditions. The shape
parameters 𝜷 and speaking style feature 𝒔 are shared across all
windows. The denoising network then outputs the clean sample as:

�̂�0
−𝑇𝑝 :𝑇𝑤 = 𝐷

(
𝑿𝑛0:𝑇𝑤 ,𝑿

0
−𝑇𝑝 :0,𝑨−𝑇𝑝 :𝑇𝑤 , 𝒔, 𝜷, 𝑛

)
. (7)

3.3.1 Speaking Style Encoder. We introduce a novel speaking style
encoder designed to capture the unique speaking style of a given
speaker from a brief video clip. Speaking style is a multifaceted
attribute that manifests in various aspects such as the size of the
mouth opening [Cudeiro et al. 2019], facial expression dynamics —
especially in the upper face [Xing et al. 2023] — and head movement
patterns [Yi et al. 2023; Zhang et al. 2023b]. Given the complexity
and difficulty in quantitatively describing speaking styles, we opt
for an implicit learning approach through contrastive learning. We
operate under the assumption that the short-term speaking styles
of the same person at two proximate times should be similar.

Architecture. The speaking style encoder (Figure 2 right) utilizes
a transformer encoder to extract style features from a sequence of
motion parameters 𝑿0:𝑇 . The encoder features {𝒉𝑖 } are aggregated
by average pooling into the style embedding 𝒔. Formally, this is
described as:

𝒔 = 𝑆𝐸 (𝑿0:𝑇 ) . (8)
Contrastive Learning. We use the NT-Xent loss [Chen et al. 2020]

for contrastive learning. Each training minibatch consists of 𝑁𝑠
samples of speech features and motion parameters of length 2𝑇 . We
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split the sample length in half to get 𝑁𝑠 pairs of positive examples.
Given a positive pair, the other 2(𝑁𝑠 − 1) examples are treated
as negative examples. We use cosine similarity as the similarity
function. The loss function for a positive pair of examples (𝑖, 𝑗) is
defined as:

L𝑖, 𝑗 = − log
exp

(
cos_sim(𝒔𝑖 , 𝒔 𝑗 )/𝜏

)∑2𝑁𝑠

𝑘=1 1𝑘≠𝑖 exp (cos_sim(𝒔𝑖 , 𝒔𝑘 )/𝜏)
, (9)

where 1𝑘≠𝑖 is an indicator function and 𝜏 represents a temperature
parameter. The overall loss is computed across all positive pairs for
both (𝑖, 𝑗) and ( 𝑗, 𝑖).

3.3.2 Training Strategy. In our window-based generation approach,
our network faces two different scenarios: (a) generating the ini-
tial window, where the previous window conditions are learnable
start features, and (b) generating subsequent windows, where the
conditions are speech features and motions parameters from the
preceding window. The network also requires a shape parameter
𝜷 and a speaking style feature 𝒔 in both scenarios. Therefore, we
propose a novel training strategy to meet this demand. Specifi-
cally, each training sample includes a frame of shape parameter 𝜷 ,
a speech clip (which will be encoded into speech features 𝑨0:2𝑇𝑤
by the HuBERT encoder), and a corresponding motion parameter
sequence 𝑿0

0:2𝑇𝑤 . We partition the sample into two windows and
employ the speaking style encoder to derive style features for each,
resulting in (𝒔𝑎, 𝒔𝑏 ). The tuple (𝑨0:𝑇𝑤 ,𝑿

0
0:𝑇𝑤 , 𝒔𝑏 ) is used to train the

first window, while (𝑨𝑇𝑤 :2𝑇𝑤 ,𝑿
0
𝑇𝑤 :2𝑇𝑤 , 𝒔𝑎) with the previous win-

dow conditions (𝑨𝑇𝑤−𝑇𝑝 :𝑇𝑤 ,𝑿
0
𝑇𝑤−𝑇𝑝 :𝑇𝑤 ) is used to train the second

window. Taking into account that the actual length of speech during
generation may not fully occupy the window, we introduce a ran-
dom truncation of samples during training. This approach ensures
that the model is robust to variations in speech length.

3.3.3 Sampling with Incremental Classifier-Free Guidance. During
generation, we sample the result 𝑿0 conditioned on (𝑨, 𝒔, 𝜷) in
an iterative manner. Specifically, we estimate the clean sample as
�̂�0 = 𝐷 (𝑿𝑛,𝑨, 𝒔, 𝜷, 𝑛) and subsequently reintroduce noise to obtain
𝑿𝑛−1. This process is repeated for 𝑛 = 𝑁, 𝑁 −1, . . . , 1, in accordance
with the process in Tevet et al. [2023].

Furthermore, we find it beneficial to apply classifier-free guidance
[Ho and Salimans 2022] with the incremental scheme [Brooks et al.
2023], which has been successfully applied to image generation
from multiple conditions, where

�̂�0 = 𝐷
(
𝑿𝑛, ∅, ∅, 𝜷, 𝑛

)
+𝑤𝑎

[
𝐷
(
𝑿𝑛,𝑨, ∅, 𝜷, 𝑛

)
− 𝐷

(
𝑿𝑛, ∅, ∅, 𝜷, 𝑛

) ]
+𝑤𝑠

[
𝐷
(
𝑿𝑛,𝑨, 𝒔, 𝜷, 𝑛

)
− 𝐷

(
𝑿𝑛,𝑨, ∅, 𝜷, 𝑛

) ]
.

(10)

The𝑤𝑎 and𝑤𝑠 are the guidance scales for audio and style, respec-
tively. During training, we randomly set the style condition to ∅
with 0.45 probability, and set both the audio and style conditions to
∅ with 0.1 probability.

4 EXPERIMENTS

4.1 Datasets
We introduce a new dataset— Talking Face with Head Poses (TFHP)
— which contains 1,052 videos of 588 subjects, totaling 26.5 hours.
In TFHP, 348 videos are collected from the downloading script pro-
vided by High-Definition Talking Face (HDTF) dataset [Zhang et al.
2021]. Compared with HDTF, our TFHP dataset is more diversified
in content, featuring video clips from lectures, online courses, in-
terviews, and news programs, thereby capturing a wider array of
speaking styles and head movements. Moreover, all videos are con-
verted to 25 fps. In total, approximately 2,385,000 frames of FLAME
parameters are reconstructed from the videos with our carefully
designed data processing pipeline as previously mentioned. We split
the combined dataset by speakers, resulting in 460 for training, 64
for validation, and 64 for testing.

4.2 Experiment Setup
Implementation Details.We use a four-layer transformer encoder
with four attention heads for the speaking style encoder, with feature
dimension 𝑑𝑠 = 128, sequence length 𝑇 = 100 (4 seconds), and
temperature 𝜏 = 0.1. We train the encoder with the Adam optimizer
[Kingma and Ba 2015] for 26k iterations, with a batch size of 32 and
a learning rate of 1e−4.
We use an eight-layer transformer decoder with eight attention

heads for the denoising network, with the feature dimension𝑑 = 512,
the window length 𝑇𝑤 = 100, and 𝑇𝑝 = 10. We adopt a cosine noise
schedule with diffusion 𝑁 = 500 steps. We train the denoising net-
work with the Adam optimizer for 90k iterations, using 5k warmup
steps, batch size 16, and learning rate 1e−4. We set 𝜆vert = 2e6,
𝜆vel = 1e7, and 𝜆smooth = 1e5 to balance the magnitude of the losses.
The overall training on an Nvidia 3090 GPU takes about 12 hours.
Baselines.We compare our approach with state-of-the-art 3D facial
animation methods: FaceFormer [Fan et al. 2022], CodeTalker [Xing
et al. 2023], and FaceDiffuser [Stan et al. 2023], which are trained
with 3D mesh data generated from 3DMM parameters of our TFHP
dataset. Recognizing the scarcity of speech-driven 3D animation
methods that account for head poses, we also compare with two
2D talking face generation methods, Yi et al. [2023] and SadTalker
[Zhang et al. 2023a], which incorporate head movements and utilize
a 3DMM as an intermediate face representation. To compare with
these two types of methods, we train two versions of our model:
“Ours” (with head pose prediction) and “Ours (no HP)” (without
head pose prediction).

4.3 Quantitative Evaluation
Following previous studies, we employ two established metrics —
lip vertex error (LVE) [Richard et al. 2021] and upper face dynamics
deviation (FDD) [Xing et al. 2023] — for the quantitative evaluation
of generated facial expressions. LVE measures lip synchronization
by calculating the maximum L2 error across all lip vertices for each
frame. FDD evaluates the upper face motions, which are closely
related to speaking styles, by comparing the standard deviation of
each upper face vertex’s motion over time between the prediction
and the ground truth. To assess head motion, we use beat alignment



6 • Zhiyao Sun, Tian Lv, Sheng Ye, Matthieu Lin, Jenny Sheng, Yu-Hui Wen, Minjing Yu, and Yong-Jin Liu

Table 1. Quantitative evaluation of the comparative methods, our proposed method, and ablation study variants. We run the evaluation 10 times and report
the average score with a 95% confidence interval when applicable. We also report the diversity scores of expression and head pose generation. Note that the
vertex-related metrics are not comparable with SadTalker due to its different face topology.

Methods LVE (mm) ↓ FDD (×10−5m) ↓ MOD (mm) ↓ BA ↑ Div (exp) (×10−4) ↑ Div (HP) ↑

w
/o

H
P

FaceFormer 9.90±0.030 16.95±0.016 2.63±0.015 N/A 0 N/A
CodeTalker 12.71±0.057 12.44±0.064 2.87±0.034 N/A 0 N/A
FaceDiffuser 12.12±0.038 15.48±0.048 3.50±0.052 N/A 5.93 × 10−5 N/A
Ours (no HP) 8.81±0.008 10.13±0.038 1.72±0.009 N/A 2.83 N/A

w
/H

P Yi et al. 9.99 21.50 2.42 0.26 0 0
SadTalker — — — 0.24±0.001 0 0.808

Ours 8.94±0.013 9.60±0.027 1.62±0.009 0.29±0.005 2.19 1.16

A
bl
at
io
ns

Ours w/o L𝑔𝑒𝑜 11.29±0.012 15.11±0.043 2.14±0.013 0.28±0.009 — —
Ours w/o AM 12.81±0.011 12.58±0.049 2.18±0.007 0.24±0.006 — —
Ours w/o CFG 9.58±0.014 9.59±0.032 1.56±0.011 0.29±0.010 — —
Ours w/o SSE 11.33±0.013 12.97±0.052 2.03±0.017 0.28±0.005 — —

(BA) [Li et al. 2022; Zhang et al. 2023a], albeit with a minor modifica-
tion: we compute the synchronization of detected head movement
beats between the predicted and the actual outcomes. For examining
the diversity of facial expressions and head poses generated from
identical input, we follow Ren et al. [2023] to compute a diversity
score. Since the size of the mouth opening can also indicate speaking
style [Cudeiro et al. 2019], we introduce a new metric called mouth
opening difference (MOD), which measures the average difference in
the size of the mouth opening between the prediction and ground
truth.
We present the quantitative results and the diversity scores in

Table 1. Ourmethod outperforms all others across all metrics, achiev-
ing the best lip synchronization and head pose beat alignment. Ad-
ditionally, the FDD, MOD, and BA metrics suggest that our method
most effectively captures speaking styles. As for diversity, the other
methods employ deterministic approaches for motion generation,
with the exception of SadTalker (which samples head poses from
a VAE) and FaceDiffuser. However, we find FaceDiffuser produces
nearly identical results for the same input. Consequently, these
methods are unable to produce varied expressions and head poses
from identical inputs, falling short in capturing this many-to-many
mapping.

4.4 Qualitative Evaluation
We show the comparison of our method with other comparative
methods in Figure 3 and 4. Our method excels in handling chal-
lenging cases, such as articulating bilabial consonants and rounded
vowels. Moreover, the generated results have the closest speaking
style to the ground truth in aspects like upper facial expressions and
mouth opening size. Notably, our approach can also spontaneously
produce random movements like eye blinks, which are implicitly
learned from the data distribution. Our generated head motions also
align well with the stress and rhythm in speech, in a way similar to
the ground truth. More results can be found in the supplementary
demo video.

Table 2. User study results.

Method Lip Sync ↑ Style Sim ↑ Natural ↑
FaceFormer 2.56 2.60 2.36
CodeTalker 2.88 3.00 2.90
FaceDiffuser 2.71 2.51 2.35
Ours (no HP) 4.23 4.07 4.43

Yi et al. 1.94 2.02 1.99
SadTalker 3.25 2.91 2.96

Ours 4.52 4.25 4.43

4.5 User Study
To conduct a more comprehensive assessment of our approach, we
designed a user study with the following experiment setup. The
methods to be compared are categorized into two groups based
on whether head motion are generated. The group without head
motion includes FaceDiffuser, FaceFormer, CodeTalker, and Ours
(no HP) and consists of 12 sets of questions. The group with head
motion involves Yi et al., SadTalker, and our approach, comprising
8 sets of questions. In each set, participants are shown the ground
truth animation as well as animations generated by each method.
Participants are then asked to rate on a scale of 1-5 the lip syn-
chronization, similarity to the speaking style of the ground truth,
and the naturalness of facial expressions and head movements. For
more information about the settings, please refer to the Appendix.
Twenty-six participants took part in the study, and the results are
presented in Table 2. The results demonstrate that our method signif-
icantly outperforms existing works in terms of lip synchronization,
similarity to the ground truth speaking style, and the naturalness
of facial expressions and head movements.
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Fig. 3. Qualitative comparison with the state of the arts (w/o head pose prediction). Results of different identities are split by dashed lines.

4.6 Ablation Study
The results are summarized in Table 1, showing that the removal
of the speaking style encoder (Ours w/o SSE) leads to a decline
in performance across all metrics, as our method is no longer ca-
pable of generating animations tailored to the speaking style of
individuals. Removing all geometric losses (Ours w/o L𝑔𝑒𝑜 ) results
in our method being unable to produce precise facial animations.
Removing the alignment mask (Ours w/o AM) causes a serious out-
of-sync problem. However, we observe that excluding classifier-free
guidance (Ours w/o CFG) yields a mixed impact on the metrics.
This is probably due to the fact that CFG is a technique in diffusion
models that aims to reduce the diversity of the generated samples
while enhancing the quality of each individual sample. Thus, CFG
improves LVE for lip synchronization, while slightly diminishing
performance on FDD and MOD evaluations, which we speculate
are metrics closely related to speaking styles.

5 DISCUSSIONS
Choice of Face Representation. Unlike closely related works
[Cudeiro et al. 2019; Fan et al. 2022; Xing et al. 2023] that use 3D

mesh vertices, our approach leverages a widely used 3DMM— specif-
ically the FLAME model [Li et al. 2017] — for face representation.
There are several reasons for this choice. First, given the computa-
tional intensity of diffusion models, the lower-dimensional 3DMM
parameters offer a substantial advantage in terms of computational
speed when compared to predicting mesh vertices. Second, data
collection and coverage present challenges. Capturing real-world
3D mesh data requires professional motion capture systems and
considerable investments of time and effort, thereby constraining
the scale and diversity of data that can be collected. For example,
VOCASET [Cudeiro et al. 2019] only provides less than 30 minutes
of data from just 12 subjects. Conversely, 2D audio-visual data are
much simpler to collect, and numerous off-the-shelf methods exist
for reconstructing 3DMM parameters from these data, offering con-
siderably wider coverage of identities, phonemes, and styles than
scanned mesh data. Additionally, the reduced dimensionality, along
with the blendshapes as a prior, simplifies the learning process and
improves generalization [Peng et al. 2023]. Lastly, using 3DMM pa-
rameters facilitates integration with downstream applications such
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Fig. 4. Qualitative comparison with the state of the arts (w/ head pose prediction). Results of different identities are split by dashed lines. The “>” indicates
stress in speech.

as driving blendshape-based avatars [Qian et al. 2023] or facial ex-
pression editing [Geng et al. 2019; Sun et al. 2023]. We demonstrate
such rendered avatar animations in the Appendix and demo video.
Limitations. Although our method is able to generate high-quality
stylistic 3D talking face animation with vivid head poses, there are
still some limitations within our framework that could be addressed
in follow-up works. Firstly, the computational cost of inference is
relatively high due to the sequential nature of the denoising process.
To mitigate this, future research can explore more advanced denois-
ers such as DPM-solver++ [Lu et al. 2022]. Secondly, our method
may produce vague or overly smoothed lip motions when encoun-
tering very high noise. Possible solutions include incorporating
noise suppression during preprocessing or augmenting the training
data with noisy audio. Additionally, like existing SOTAs, our ap-
proach focuses on animating the face shape while ignoring the inner
mouth (including teeth and tongue). Exploring the representation
and animation of the inner mouth can lead to more realistic results.
Lastly, a promising direction for future research would be to collect
real-world 3D talking data that encompasses a broader range of
identities and styles, which would further enhance the effectiveness
of our approach and contribute to the research community.
Ethical Considerations. Since our approach is able to generate re-
alistic talking head sequences, there are risks of misusing, such
as deepfake generation and deliberate manipulation. Therefore,
we firmly require that all talking face sequences generated by our
method be marked or noted as synthetic data. Moreover, we will

make our code publicly available to the deep fake detection com-
munity to further ensure that our proposed method can be applied
positively. We also hope to raise awareness of the risks and support
regulations preventing technology abuse involving synthetic videos.

6 CONCLUSION
Speech-driven expression animation has a wide range of applica-
tions in daily life and has received extensive attention from the
research community. It involves a challenging many-to-many map-
ping across modalities between speech and expression animation. In
this paper, we present DiffPoseTalk, a novel diffusion-based method
for generating diverse and stylistic 3D facial animations and head
poses from speech. We leverage the capability of the diffusion model
to effectively replicate the distribution of diverse forms, thereby
addressing the many-to-many mapping challenge. Additionally, we
resolve the limitations associated with current diffusion models that
hinder its direct application to speech-driven expression anima-
tion. Leveraging the power of the diffusion model and the speaking
style encoder, our approach excels in capturing the many-to-many
relationships between speech, style, and motion.
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